Single-cell multiomics: from reference atlases to human diseases

Human Cell Atlas Latin America

October, 7th 2022

Elisabetta Mereu, PhD Group Leader @ Cellular Systems Genomics Lab Josep Carreras Leukemia Research Institute (IJC) Badalona, Spain Email:<u>emereu@carrerasresearch.org</u> Web: <u>https://mereulab.org</u>

Characterizing complex tissues at molecular and cellular level

Targeting inflammation in ageing and human diseases

Adapted from scGEN, Lotfollahi et al, Nat. Methods. 2020

Tissue-level inflammation and regeneration

Forbes & Rosenthal, Nat. Medicine (2014)

The Human Pancreas Atlas: why is it important?

- The pancreas is a vital organ consisting of:
 - Exocrine: 95% of cells
 - Endocrine: 5% of cells
- Dual function:
 - the secretion of enzymes for the digestive system.
 - the regulation of several hormones (e.g. insulin)
- Several human diseases are associated with the pancreas, including:
 - Pancreatic Adenocarcinoma
 - Diabetes Mellitus
- Difficult to study due to its high autolytic activity, resulting in the rapid degradation of cells upon pancreatic resection.

1. The ESPACE consortium is the European HCA Pancreas initiative

Technical University of Munich

Hubrecht Institute

Developmental Biology and Stem Cell Research

ПΠ

A single-cell multiomics atlas of the Human Pancreas

The transcriptomic and epigenomic human adult pancreas atlas

Cell-type composition of the healthy human pancreas (snATAC data)

Roadmap towards a Human Pancreas Atlas

- 1. Reads quality checks and mapping to generate the gene/peak count matrix
- 2. Characterize, merge and filter peaks in snATAC-seq
- 3. Filtering of low-quality cells
- 4. Integrating samples
- 5. Ambient RNA removal
- 6. Technical doublet removal in both RNA/ATAC
- 7. Consensus cell-type annotations
- 8.Downstream analysis ...

1. Generating a comprehensive cell-type reference dataset

Total: 445.507 cells – 16 donors – 64 samples

Identification and characterization of pancreatic subpopulations

Total: 445.507 cells – 16 donors – 64 samples

Identification and characterization of pancreatic subpopulations – Endocrine cell types

Josep Carreras LEUKAEMIA Research Institute

2. Integration with scATAC-data throught label transferring

LEUKAEMIA Research Institute

Research Institute

Linking regulatory DNA elements to their target genes by co-accessibility networks

LEUKAEMIA Research Institute

GATA4 (Acinar development)

BLK: The gene encodes a protein that stimulates insulin synthesis and secretion in response to glucose and enhances the expression of several beta-cell transcription factors.

Integrating GWAS signals with peaks to obtain genetic mapping of cell-type specificity for complex traits and diseases

3. Pancreatic lesions affects healthy pancreas

Lipomatosis Fibrosis PanIN ^(Pancreatic Intraepithelial Neoplasia)

Donor	Normal	Lipomatosis	Fibrosis	PanIN
Healthy	36	17	17	6
Pancreatectomy	5		1	
T2D	3		2	

Cell-type composition changes in micropathologies

 Higher abundance of macrophages in lipomatosis

Cell-type composition changes in micropathologies

- Higher abundance of macrophages in lipomatosis
- Higher abundance of lymphocytes in fibrotic samples

Cell-type composition changes in micropathologies

- Higher abundance of macrophages in lipomatosis
- Higher abundance of lymphocytes in fibrotic samples
- No changes in composition for PanIN (integration with PDAC will serve to reconstruct the early stages of PDAC initiation)

Transcriptional and epigenetic changes in micropathologies

Josep Carreras LEUKAEMIA Research Institute

Transcriptional and epigenetic changes in micropathologies

4. Temporal single-cell analysis of fetal samples shed light on pancreas development

- Characterization of pancreatic cell-type progenitors
- Understanding signalling pathways that regulate pancreas development, direct cell fate decisions and cellular plasticity in adult pancreas.
- Particularly relevant in understanting human pancreatic disorders and regenerative medicine

UMAP_2

Changes in chromatin accessibility at different levels of glucose

Summary

- We have generated a comprehensive single-cell reference atlas of ${\sim}1M$ of pancreatic cells across:
 - > 45 «healthy» adults mapped by snRNA/snATAC-seq
 - IO Fetal pancreas mapped by snRNA/snATAC-seq
 - 20 T2D/IFG/Controls adults. Islet cells mapped by scRNA-seq, scATAC-seq, scVASA-seq and Spatial information.
- Our resource permit the exhaustive identification and characterization of >50 pancreatic cell types and states, enabling the identification of:
 - > A previously unappreciated Acinar heterogeneity;
 - Cell-type pancreatic progenitors involved in embrionic development;
 - Critical cell-types/states associated with common histopathological features and PDAC initiation;
 - Differential cell-type changes in composition and cellular processes underlying T2 diabetes and pre-diabetic samples.

Cellular Systems Genomics Group & Friends

Acknowledgements

Computational Postdoc WANTED!!

Berlin 2022- Final ESPACE meeting

Josep Carreras⁹ LEUKAEMIA Research Institute